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Abstract

Let D be an integral domain which differs from its quotient field K. The ring of integer-valued
rational functions of D on a subset £ of D is defined as Int®(E, D) = { f(X) € K(X)|f(E)C D}.
We write Int®(D) for Intf(D, D).

It is easy to sce that Int™(D) is strictly larger than the more familiar ring Int(D) of integer-
valued polynomials precisely when there exists a polynomial f(X) € D[X] such that f(d) is a
unit in D for each d € D. In fact, there arc striking differences between Int™(D) and Int(D) in
many of the cases where they arc not equal.

Rings of integer-valued rational functions have been studied in at least two previous papers.
The purpose of this note is to consolidate and greatly expand the results of these papers. Among
the topics included, we give conditions so that Int™ (£, D) is a Priifer domain, we study the value
ideals of Int" (£, D) (for example, we show that Int™ (K, D) satisfies the strong Skolem property
provided it is a Priifer domain), and we study the prime ideals of Int™(£,D) (for example, we
show that if ¥ is a valuation domain, then each prime ideal of Int®(}) above the maximal ideal
m of V' is maximal if and only if m is principal). © 1998 Elsevier Science B.V. All rights
reserved.

AMS Clussifications: Primary: 13C05, 13F05, 13F20; secondary: 13B24, 13G035, 13B22,
13B30, 13F30

1. Introduction

Throughout this paper, D denotes an integral domain which is not a field, with
quotient field K, and £ a subset of K. The ring of integer-valued rational functions of
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D on the subset £ is defined as the ring
Int"(£,D) = {f(X) € K(X)| f(E)=D}.

We simply write Int"(D) for Int"(D,D). Rings of integer-valued rational functions
have been studied in at least two different papers, [3], and [11]. The purpose of this
note is to consolidate and greatly expand the results of these papers.

The ring Int™(D) has many similarities to the familiar ring of integer-valued poly-
nomials Int(D) = {f(X) € K[X] | f(D)C D}. In fact, for many familiar domains D
(such as Z in particular) Int(D) = Int®(D). However, we shall observe some striking
differences in many instances whcre they arc not equal (as is always the case if D
is quasi-local). For example, if V' is a valuation ring with a maximal ideal which is
not principal or with an infinite residue field, then Int(¥) = V[X] and integer-valued
polynomials are not much worth considering, whereas, if V' is a rank-one discrete val-
uation domain with finite residue field, Int(}") turns out to be a Prifer domain [7,
Proposition 2.3]. Also, if we looked at integer-valued polynomials on a subset, we
should restrict ourselves to fractional subsets of } (that is, subsets with a common
denominator), since otherwise Int(£, V) contains only constants [13]. Integer-valued
rational functions turn out to be much more interesting: we show that Int®(£, V) is
not trivial and is a Prifer domain, even a Bézout domain, whenever the maximal ideal
m of V is principal or the residue field ¥/nu is not algebraically closed, whatever the
subset £ of K (and even for £ = K). We also generalize such results to Int®(£, D),
where D is a Priifer domain satisfying various hypotheses.

In Section 2 the principal results concern localization properties. In particular, we
retate Int®(E, D) with Int®(K, D) and Int™(K,S~'D), where S~'D is a localization of D.

In Section 3 we consider the question of characterizing the domains D for which
Int®(D) is a Priifer {or Bézout) domain. An easy necessary condition is that D itself
be a Priifer domain. We describe two classes of Priifer domains such that Int™(E, D)
is a Priifer domain: monic Priifer domains (such that there exists a monic unit-valued
polynomial f(X) € D[X]) and singular Priifer domains (the definition of which is
more technical). In particular, for a valuation domain ¥, these classes correspond to
the cases where the maximal ideal of ¥ is principal and where its residue field is not
algebraically closed.

In Section 4 we consider ideals of values of Int®(E, D). The major result is that
Intf(K, D) satisfies the strong Skolem property whenever it is a Prifer domain. We
also discuss subsets £ of K such that Int®(E, D) satisfies the strong Skolem property.

In Sections 5 and 6 we consider the prime ideal spectrum of Int™(£, D). First with
no hypothesis on D, we consider the prime ideals above (0) and prove in particular
that there always exist nonzero such primes. We next show how to describe some
prime ideals of IntR(E, D), using ultrafilters. In the second of these two sections, we
let D = ¥ be a valuation domain (such that its maximal ideal is principal or its residue
field is not algebraically closed) and consider the prime ideals of Int®(}') above the
maximal ideal m of ¥. One of our major results is that each prime ideal of Int®(})
above m is maximal if and only if m is principal.
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2. Localization

The domains such that Int(D) = Int®(D) have been studied in [2] and [9] where
they were called d-rings. We are mainly interested in non-d-rings, for which equality
does not occur. A necessary and sufficient condition for a domain to be a non-d-ring,
1s that there exists a nonconstant polynomial f(X) € D[X] such that f(d) is a unit in
D for all d € D [9, Proposition 1]. Indeed this condition is clearly sufficient since then
1/£(X) lies in Int®(D), but is not a polynomial (note that if J(D), the Jacobson radical
of D, is nonzero and if d is a nonzero element of J(D), then f(X)=dX + 1 is such
a unit-valued polynomial). But now suppose that D = ¥ is the ring of a valuation v,
and that f(X) is a monic unit-valued polynomial of V[X] (that is, taking unit values
on V), then 1/£(X) lies in Int®(K, V) and so does X/ f(X): if f(X) is of degree n,
and if v(x) < 0, then v(f(x)) = nv(x) < v(x) (necessarily n > 2). Along that line we
have the following:

Proposition 2.1. Let D be a domain and U(D) be the set of units of D. Suppose
there exists a rational function \ such that

ey and X both belong to Int™(K, D),

o Y(DYCUD).

Then K(X) is the quotient field of IntR(K,D) and Int®(E, D) is the localization of
Int"(K, D) with respect to the multiplicative set

S = {p € (K, D) | p(E) C U(D)}.

Proof. If ¢ € K(X), then y(¢) and ¢y(¢) both belong to Int™(K,D). Since ¢ =
(W) (dy(d)), it follows that K(X) is the quotient field of IntR(K,D). Now
suppose that ¢ € Int™(E, D). By hypothesis ¥(¢) is unit-valued on E, hence y(¢) € S.

O

We now give examples where D is a Priifer domain. For each maximal ideal m of
D we denote by vy, the corresponding valuation. If y = 1/ f(X), where f(X) € D[X],
belongs to Int™(K, D), note that f must necessarily be a unit-valued polynomial (hence
the last hypothesis becomes superfluous in the previous proposition). Note also that f
is unit-valued on D if and only if, for each maximal ideal m of D, it is unit-valued on
D, (that is, f has no root modulo m). Lastly, note that such a unit-valued polynomial
is such that both 1/f(X) and X/f(X) belong to Int*(K, D) if and only if, there is a
family A of maximal ideals of D such that D = ﬂme 4 Dy, and, for each maximal ideal
m e A, if x € K is such that v, (x) < 0, then v, (f(x)) < vu(x) < 0.

Example 2.2. (1) Suppose that D 1s a Priifer domain such that there exists a monic
unit-valued polynomial f(X) € D[X]. Then 1/f(X) and X/ f(X) belong to Int™(K, D).
We shall say that D is monic. In particular, a valuation domain is monic if and only
if its residue field is not algebraically closed.
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(2) Suppose that D is a Priifer domain and that there exists a family A of maximal
ideals of D such that
e D= mmeA Dy,

e for each m € A, mD,, = 1,,D,, is a principal ideal,
e there is an element 1 € D and an integer » such that, for each m € A, 0 < v,,(1) <

AU (L)

If f=1+4¢X", then 1/f(X) and X/f(X) belong to Int®(K,D). We shall say that
D is singular. In particular, a valuation domain is singular if and only if its maximal
ideal m is principal: m = tD; in this case we may simply consider the polynomial
fX)=1+1x?%

Note that the monic case is realized if the residue fields of D are all finite with a
bound on their order and that the singular case is realized if D is a Dedekind domain,
all its essential valuations being an extension of a rank-one discrete valuation, with a
bound on their ramification index.

Under similar hypotheses, we next state another localization property:

Proposition 2.3. Let D be a domain. Suppose there exists a polynomial f(X) € D[X]
such that ) f(XY and X/ f(X) both belong to Int"(K,D). Let S™'D be a localization
of D and U(S™'D) be the set of units of S™'D. Then Int™(E,S™'D) is the localization
of Int™(E, D), with respect to the multiplicative set

T {¢ ¢ In"(E,D) | $(E)C U(S™' D).

Proof. It is clear that 7' Int®(E,D)YC Int™E,S'D). Let f(X) € D[X] be as in the
statement of the proposition and let ¢ € Int®(E,S~'D). As in the previous proof, write
¢ = (/£ " ¢/ f(¢). We need to show that 1/f(¢) is a unit in Int*(E,S~'D).
Equivalently, it suffices to show that f(¢(d)) € U(S!'D) for every d € E. Let d € E.
Suppose ¢(d) € D. Necessarily, f(¢(d)) is a unit in D and so is a unit in S7'D as
well. Now, suppose that ¢(d) € D. We know that ¢(d) € S~'D and that f(X) € D[X].
It follows that f(P(d)) € S~'D. Since 1/f(P(d)) € DC S 'D the result follows, [

To conclude this section, we show that, if the quotient field of a valuation domain
V is algebraically closed, it does not satisfy the hypotheses of Proposition 2.1 (since
it does not satisfy its conclusions). Incidentally, this is a way to see that, in this case,
the residue field of V is algebraically closed and its maximal ideal is not principal.

Proposition 2.4. Ler V be a valuation domain with maximal ideal m and quotient
field K. Suppose that K is algebraically closed. Then Int™(K, V)=V and Int"(V) =
ST'V[X] where S = {rX + 1| r e m}.

Proof. Let £ be a subset of K and ¢ € Int®(E,D) be a nonzero rational function.
We can write ¢ = h/g where h and g both lie in ¥ [X] and are relatively prime over
K[X]. If d € E is a root of g, then ¢(d) is undefined. Hence, ¢ cannot have any
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roots in £. If K is algebraically closed, and if £ = K, then ¢ must be constant, hence
Int®(K, V') = V. With the same hypothesis, if £ = ¥, then g can be factored into linear
factors over K, of the form rX + I, where r € m (since ¢ has no root in V). The result
follows. O

3. Priifer/Bézout domains

In this section, we consider the question of classifying the domains D such that
Int®(E,D) is a Priifer (or Bézout) domain for various subsets £ of K. We begin with
a necessary condition which generalizes [11, Proposition 3.11].

Proposition 3.1. Let D be a domain such that Int™(E,D) is a Priifer domain. Then
D is a Priifer domain.

Indeed, D is an homomorphic image of Int®(E, D) (choose a € E and consider the
morphism ¢ € Int®(E, D) — ¢(a)).

We shall now prove that Int®(K,D) is a Priifer domain in both the monic and
singular case of Examples 2.2 (and even a Bézout domain in the latter case). The next
result generalizes [11, Theorem 3.3]; its proof is in every respect similar (replacing
Intf(D) by IntF(E, D)).

Theorem 3.2. Let D be a monic Priifer domain. Then Int™(K, D) is a Priifer domain
and its Picard group is torsion. More precisely, suppose that there is a degree n monic
unit-valued polynomial, with coefficients in D. Then, for each finitely generated ideal
W of Int*(K, D), there is an integer s such that W' is principal.

The following corollary follows immediately.

Corollary 3.3. Let D be a monic Priifer domain. Suppose there exist two monic unit-
valued polynomials [ and f7 € D[X] the degrees of which are relatively prime. Then
Int™(E,D) is a Bézout domuin.

Note that the hypotheses of this corollary are easily satisfied: for example, choose
two monic irreducible polynomials f and g in Z[X] with relatively prime degrees
(each degree greater than 1) and let D = Z[{f(d)™',g(d)"' | d € Z}]. Then, D is a
Dedekind domain where f and ¢ are both unit-valued on D (see [10, Proposition 1.14
and Construction 1.16] for details).

We shall next deal with singular Priifer domains and first give a sufficient condition
for Int™(K, D) to be a Bézout domain (and thus also Int®(£, D) for each subset £ of
K).

Lemma 3.4. Let D be a Priifer domain. Suppose there exists a fumily A of maximal

ideals such that D =, .y D and a rational function 0 € K(X) such that, for each
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m e A and each x € K,

- lf Um(x) 7& 0, then U]"(H(X)) =0,

— if v(x) = 0, then v, (0(x)) > 0.
Then Int™(K,D) is a Bézout domuin.

Proof. Let ¢, € Int™(K, D) and let A = (¢, ). We want to show that 2 is principal.
Clearly, 8 € Int®(K, D). Hence, p = 0(¢/\y ) + ¥ belongs to . It is easy to see that,
for all m € A and all x € K,

Um(P(X)) = inf{vm((l)(x))a L‘m(l//(-’f))}-

It immediately follows that W = p Int™®(K, D). 0]

We next show that a singular Priifer domain is such that Int®(K,D) is a Bézout
domain, thus, generalizing [3, Corollaire 7.4] (which is concerned with a rank-one
discrete valuation domain). From Proposition 2.1, Int®(E,D) is then also a Bézout
domain for each subset E of K.

Theorem 3.5. Let D be a singular Priifer domain. Then Int®(K,D) is a Bézout
domain.

Proof. Recall, from the definition, that if D is a singular Priifer domain, there exists

family A of maximal ideals of D such that

e D= mmEA D"l’

e for each m € A, mD,, = f,D,, is a principal ideal,

e there is an element ¢ € D and an integer n such that, for each m € A, 0 < v, (t) <
AUy (fm )-

One may then verify that the function

a4

I+ X
(XM XY

satisfies the hypothesis of the previous lemma. [J

Remark 3.6. (i) Let V be a valuation domain with a finite residue field. It results
from Corollary 3.3 that Int™(E, V) is a Bézout domain. In this case, it would also be
easy to give a function satisfying the hypotheses of Lemma 3.4

— If the cardinal of the residue field is g # 2, we could let

1 — x4t
Sl X XY
— If the cardinal of the residue field is ¢ = 2, we could let

14X
T+ X+ XY
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(ii) If D 1s a valuation domain, it is singular if and only if its maximal ideal is
principal. If ¢ is a generator, the function

(L +X?)
T
is such that

—if v(x) < 0, then v{p(x)) =0,
—if p(x) > 0, then v(p(x)) > 0.

Hence 6(X) = p(X) + p(1/X) satisfies the hypothesis of Lemma 3.4.

(111) 1t is clear that the previous theorem does apply, with the same proof, to the ring
of integer-valued rational functions, in several variables (taking K" into D). Therefore,
this ring of integer-valued rational functions in several variables is a Bézout domain.

(iv) The results of this section show that in many cases in which IntR(E,D) is a
Priifer domain, it is actually a Bézout domain. We may ask whether this is always the
case. In particular, if D is a valuation domain with residue field equal to the field R
of real numbers and with a nonprincipal maximal ideal.

(v) According to Proposition 2.4, if V' is a valuation domain and its quotient field
is algebraically closed, then Int®(¥) = S™'V[X], where S = {rX + 1| r € m}. In
this case, Int®(V) is not a Priifer domain, indeed the maximal ideal (m,X) of V[X]
survives in this localization and it contains incomparable height-one primes (such as
the principal prime ideals generated by polynomials of the form X —d where d € nt).

4. Skolem properties

Let A be an ideal of Int™(£,D) and let x € E. Then W(x) = {P(x) | ¢ € A} is
an ideal of D, called the value ideal of U at x. The Skolem properties deal with the
question of the extent to which a finitely generated ideal is characterized by its value
ideals. We say that
o IntR(E, D) satisfies the Skolem property provided whenever 2 is a finitely generated

ideal of Int®(E,D) such that A(x) = D for all x € E, then A = IntR(E, D).

e Int™(E,D) satisfies the strong Skolem property provided whenever 2 and B are
finitely generated ideals of Int®(E,D) such that A(x) = B(x) for all x € E, then
A =B,

We first deal with the Skolem property, with no restriction on £.

Lemma 4.1. Let D be a Priifer domain and let E be a subset of K such that
Int®(E, D) is a Priifer domain. Then IntR(E, D) satisfies the Skolem property.
Proof. For each x € £ and each prime ideal p of D,

Vox = {f(X) € K(X)|f(x) € Dy}

is a valuation overring of Int®(E, D) and Int®(E, D) is the intersection of these valuation
overrings, where x runs over the elements of £ and p over the prime ideals of D (we
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may also restrict ourselves to the maximal ideals). The intersection of the maximal
ideal of V, with Int®(E,D) is the prime ideal

My, = {f(X) € Int"(E.D)| f(x) € p},

and V, . is the localization of Int"(E£,D) with respect to this prime ideal (since
Int®(£,D) is a Priifer domain). From [8, Corollary 1.5], a Priifer domain R is the
intersection of the localizations of R at some prime ideals B3, if and only if each
proper finitely generated ideal is contained in one of these prime ideals. Therefore, if a
finitely generated ideal 2 of Int™(E, D) is a proper ideal, it is contained in one of the
prime ideals 9, ,, which implies that the value ideal (x) is proper (it is contained
in the prime ideal p). This is the Skolem property. [

In fact, if Int"(£,D) is a Priifer domain, it satisfies the strong Skolem property,
provided that £ is large enough (a sufficient condition, according to our next result,
is that it contains D. Thus, in particular, Int™(D) and Int®(K,D) satisfy the strong
Skolem property).

Theorem 4.2. Let D be a Priifer domain and let E be a subset of K such that
Int™(E,D) is a Priifer domain. Suppose that, for each maximal ideal m of D, E
contains elements with arbitrarily large values for the eorresponding valuation t,,.
Then Int®(E, D) satisfies the strong Skolem property.

Proof. Let 2 and B be two finitely generated ideals such that U(x) = B(x), for all
x € E. Without loss of generality, we may assume that 0 C B, Since Int™(E,D) is a
Priifer domain, B is invertible and 3 = AB ' is an integral ideal of Int®(E, D). Since
BB ' = Int?(E, D), there are rational functions fi,.... f, in B and g,...,g, in B~
such that fig, +--- + fig, = 1. If x is not a polc of any of these functions, we can
thus write fi(x)g1(x) + - + f.(x)g(x) = 1. Since, fi(x) € B(x) = A(x), there are
functions #; € U such that A;(x) = fi(x). Therefore, I(x) = D for all x € E, except
perhaps for finitely many elements (the poles of a finite family of rational functions).
However, since 3 is finitely generated, if 3(x) were contained in some maximal ideal
m of D, then so would J(x + a) for each ¢ with sufficiently high value in D,,. So in
fact, 3(x) = D for all x € E. But then it results from the Skolem property [Lemma 4.1]
that 3 = AV~ = Int®(E, D). In conclusion A =B, O

Remark 4.3. (i) If Int®(K, D) is a Bézout domain, there is a direct and easy proof that
it satisfies the strong Skolem property (essentially the same as that given for Int®(D) in
[11, Proposition 3.8]): let 2 and B be two finitcly generated ideals such that 2(x) =
B(x), for all x € K. By hypothesis, 2 = (¢) and B = (i) (both ideals are principal),
thus, p = (¢/Y) takes only unit values on K except perhaps for those elements such
that ¢(x) = (Y(x) = 0). This exceptional set is necessarily finite. However, as in the
previous proof, it is easy to see that if p(x) were contained in some maximal ideal m
of D then so would p(x + a) for cach a with sufficiently high value in D,,. Hence, p
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actually takes unit values on all of K. Therefore, it is a unit in Int®(K, D) and finally
A= B.

(11) For the strong Skolem property, there must be some restrictions on E. Suppose,
for example that £ is a finite set and let f(X') = [],cx(X —d). Then f is identically 0
on E and so is f2, while f and f? clearly do not generate the same ideal of Int™(£, D).
For another example (where E may be infinite), let £ = {0} U U(D) (where U(D) is
the set of units of D). Then f(X) = X takes unit values on E, except at 0 where it
vanishes, and so does f2. However again, f and f? do not generate the same ideal
of Int®(E, D).

The hypothesis of Lemma 4.1 is satisfied if D is a monic Priiffer domain [Theorem
3.2]. In fact, without assuming D to be a Prifer domain, the existence of a monic
unit-valued polynomial is enough to ensure at least the Skolem property.

Proposition 4.4. Ler D be a domain such that there exists a unit-valued monic poly-
nomial [ € D[X] and let E be a subset of K. Then Int™(E,D) hus the Skolem
property.

Proof. Let A = (¢, ¢2,..., ¢, ) be a finitely generated ideal of Int™(E,D) such that
A(x) =D for all x € E. Write

SX) =g+ aX +-+ X",
then define Yy = ¢ and, for i > 1,

i n— n n "pf—
l//i = (¢:) * l//1'—| = a0¢j +al¢i ]l//ifl + -+ l//,;l = ¢,f <71 .
By induction, iy € U for each i, and in particular ¢ € . On the other hand, note
that for « and f§ in D,

x*ﬁ:aox”+a,1”_'/f+~-'+ﬂ”:1”_‘<§>

is such that, if » or f§ does not belong to some maximal ideal m of D, then neither
does x % f# belong to this maximal ideal. Therefore, since, for each maximal ideal m
of D and each x € E we can find ¢; such that ¢;(x) is not in m, it follows, as in
Corollaries 1.13 and 1.15 of [10] that i,(x) is a unit of D, for all x € E. This implies
that ¥, is a unit in Int®(E, D). In conclusion A = Int™(E, D). 0O

5. Prime ideals: Generalities
Assuming that Int"(K,D) is a Priifer domain with K(X) as quotient field (for

example, when D is a monic or singular Priffer domain), we may focus much of
our attention on the prime ideals of Int®(K, D), since Int™(£, D) is then an overring of
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this Priifer domain. At times, it will also be useful to specifically focus on the prime
ideals of Int™(D). With this in mind, but first without any hypothesis on the domain
D, we first consider the prime ideals above (0).

Lemma 5.1. Let D be a domain, with quotient field K and g be a nonconstant poly-
nomial in K[X). Then the following assertions are equivalent.

(1) there exists a nonzero polynomial h € K[ X, relatively prime to g in K[X] such
that hlg € Int™(D),

(2) there exists a nonzero constant a € D such that af/g € Int®(D).

Proof. If # and ¢ are relatively prime, there exists two polynomials A; and ¢, and
a nonzero constant ¢ such that i1/ 4+ g9 = a. We may as well suppose that these
polynomials have their coeflicients in D, hence that they are integer-valued (we may
also suppose that a € D). If #/g € Int™(D), then h(k/g) + g1(g/9) = a/g also belongs
to Int®(D). Therfore (i) implies (ii). The converse is obvious. []

Under these equivalent conditions, ¢ is invertible in the localization S~' Int®(D),
where § is the complement of (0) in D. In other words, §~!Int®(D) = T~'K[X],
where T is the multiplicative set formed by these polynomials. The following result is
then immediate.

Proposition 5.2. The nonzero prime ideals of Int™(D) above (0) are in one-to-one
correspondence with the monic irreducible polynomials of K[X] which never appear as
the denominator of an irreducible integer-valued rational function. To the irreducible
polynomial q corresponds the prime ideal

B, = gK[X] N Int" (D).

Remark 5.3. (i) Polynomials which do not appear as the denominator of any irre-
ducible integer-valued rational function certainly exist: for any d € D, consider for
instance, the polynomial g(X) = X —d. Accordingly, there is always a chain (0) C*B,
of primes above (0).

(ii) If we restrict ourselves to the case where D = V is a valuation domain (as in the
next section), it is clear that g satisfies the equivalent conditions of the previous lemma
if and only if {v(g(x))|x € D} is bounded. The nonzero prime ideals of Int™(}/) above
(0) then correspond to the irreducible polynomials of K[X] such that {v(g(x))|x € D}
is unbounded.

Considering even a subset £ of K, we now give very general examples of prime

ideals of Int™(E, D). We first observe that, for cach pair (p,x), where p is a prime
ideal of D and x € E, then

By ={¢ € Int"(E,D)|p(x) € p}
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is a prime ideal of Int®(£,D) above p. We shall say that such a prime ideal is a
pointed ideal (similar prime ideals occur in the study of integer-valued polynomials,
see for instance [6]). We already considered such ideals in the previous section; also,
letting p = (0), and £ = D, it is easy to see that the prime ideal ‘¥, , is nothing
else than the prime ideal ‘¥ , ,, of Proposition 5.2.

We obtain more ideals by the consideration of ultrafilters. We first set a definition
and a notation:

Definition 5.4. Let D be a domain, £ be a subset of K, and A be a (nonempty) set
of pairs (p,x), where p is a prime ideal of D and x € E. For each ¢ € Int®(E, D), let

Bip.my = {(p.x) € H| $(x) € p}.

We say that By s is the characteristic set of ¢ on H.

We can make a few easy observations:
— The characteristic set of the function 0 is AH.
— Let d),l,b S Int“(E,D). Then B(¢‘”) n B(z//.H) QB(¢+,/,’[1).
— Let ¢,y € Int"(E, D). Then By Y By.iry = Bigw 1)

Proposition 5.5. Let D be a domain, E be a subset of K, and U be a filter on a
(nonempty) set H of pairs (p,x), where p is a prime ideal of D and x € E. Let

P, = {¢ € Int"(£,D)|By.m € U}.

Then VR, is a proper ideal of Int™(&, D). If moreover U is an ultrafilter, then B, is
a prime ideal.

Proof. First note that 0 € B, so B, is not empty. Let ¢,y € PB,,. Then Bgyy m)
belongs to U since it contains By, 1) By i) Similarly, if ¢ € B, and p € Int?(E, D),
then B,y ) contains By ), thus p¢ € P . In conclusion, P, is an ideal. It is a
proper ideal since the empty set does not belong to U and therefore, the characteristic
set of a unit does not belong to U.

Finally, suppose that ¢y € *B;;. Then By sy U By 1y = Bgy.y € U. If U is an
ultrafilter, either By ;) or B, ) must belong to U, hence either ¢ or i must belong
to *B,;. Therefore, P, is a prime ideal. [

Remark 5.6. (1) In particular, if we choose a pair (p.x) in the set  of all such pairs
and let U be the principal ultrafilter consisting of all subsets of Q containing (p,x),
then P, is the pointed ideal P, ..

(if) More generally, choosing a prime p and letting Hp be the set of pairs (p,x),
where x € £, then P, is a prime ideal of Int®(E, D) above p. In this case it is simpler
to consider U as an ultrafilter on E. If, in particular, we consider the ring Int®(¥V) of
integral-value rational functions on a rank-one discrete valuation domain ¥ with finite
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residue field, ultrafilters on V' correspond to the completion V of V and we, thus,
recover the prime ideals of Int®(}) above the maximal ideal m of V as in [3].

It is not clear whether all prime ideals of Int®(E, D) are ultrafilter ideals, nevertheless,
if we suppose that Int™(£, D) is a Priifer domain with torsion Picard group, ultrafilters
on the set  of all pairs (p,x) yield all maximal ideals of Int™(E, D).

Proposition 5.7. Let D be a domain and E be a subset of K such that Int®(E, D)
is a Priifer domain with torsion Picard group. Then, for each proper ideal N of
Int®(E, D), there exists an ultrafilter U on the set Q of all ordered pairs (p,x), where
p is a prime ideal of D and x € E, such that WP,

Proof. Let Uy be the collection of charateristic sets By o, where ¢ € 2. Note that
Bg o is empty if and only if ¢ is a unit. Therefore, Uy does not contain the empty
set. We next claim that Uy is closed under finite intersection. Let ¢, ¢, be elements
of 2. They generate an ideal B and, by hypothesis, there exists a positive integer e
such that B is principal: 8% = (). Clearly, B, o = By, 0 N (By, o). Then it is well
known that Uy can be extended to an ultrafilter U on @ and hence, W CR;,. [

6. Prime ideals: Valuation domain

From now on we focus our attention on the special case, where D = V is a valuation
domain such that Int®(E, V') is a Priifer domain with torsion Picard group, for example,
when its maximal ideal is principal or its residue field is not algebraically closed. We
let v be a valuation corresponding to ¥ and m be the maximal ideal of V.

To study the prime ideals above a prime ideal p, we consider ultrafilters on the set
of pairs (p,x), where x € E, in other words ultrafilters on E. For each ¢ € Int™(E, V),
as in Definition 5.4, we then define the p-characteristic set of ¢ as

Byy ={x €E| ()€ p}
and to an ultrafilter U we associate the prime ideal
in’U = {d) S IntR(E. V) i B(r/hp) S U}

It is clear that the m-characterisitic set By of a function ¢ is empty if and only if
¢ is a unit. With the same proof as in Proposition 5.7, we then have the following:

Proposition 6.1. Ler V be a valuation domain and E be a subset of K such that
Int™(E, V) is a Priifer domain with torsion Picard group. Then each maximal ideal
of Int™(E, V) is of the form

Mo = {¢ € Int"(E, V)| Bym € U}

Jor some ultrafilter U on E. In particular, if M is a maximal ideal of Int™(E, V') then
MOV =m.
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If M = M, is a maximal ideal of the Prifer domain IntR(E, V), there is a single
chain of prime ideals contained in 9. If p is contained in m, then YN, ,, contains
the prime ideal ‘B, above p, corresponding to the same filter on E. Hence, the prime
‘B, appears in the chain of primes contained in 9. In particular, if ¥ is a valuation
domain of finite dimension », we know that Int®(E, V) is of dimension at most -+ |
(since ¥V CInt®(£, V) K(X) and since V is a Jaffard domain [I, Lemme 1.1]). Since
the prime ideals of the form B, form a chain of length », we have the following.

Corollary 6.2. Let V be a valuation domain of finite dimension r and E be a subset
of K such that Int™(E, V) is a Priifer domain with torsion Picard group. Then,

(1) each saturated chain of primes in Int™(E, V') is of length v or r + 1,

(2) for each maximal ideal M of Int™(E, V') and each prime ideal p of V there is
a prime ideal of ntR(E, V) above p contained in M,

(3) for each prime ideal p of V, each chain of primes in Int®(E V') above p has
length ar most one.

We have seen in the previous section that there is always a chain of length one
above (0). For the prime ideals above m, a significant difference will appear between
the two classes of valuation domains we have considered: in one case, all these prime
ideals are maximal, in the other, there may be a chain of length one above m. We
first consider the case where m is principal, generated by ¢.

Theorem 6.3. Let V' be a valuation domain such that the maximal ideal m is prin-
cipal, generated by 1. Let E be a subset of K and MM be a prime ideal of IntR(E, V')
which lies over m. Then M is maximal.

Proof. Choose y € Int®(E, V) but ¢ M. Then let ¢ = ¥ /(t +f%). It is easy to see
that x/(t +x?) € ¥ for all x € K. Hence, ¢ € Int™(K, V') and a fortiori ¢ € Int®(E, V).
Consider Y(1 — ) = W t/(t + y?) = t¢p. Since M contains ¢, it contains the product
Y(1 — Y ¢). Since M does not contain ¥ it contains (1 — Y ¢). Hence ¥ is invertible
modulo M. O

Since Int™"(£, V') is a localization of Int®(X, V'), we could restrict ourselves to the
study of Int™(K, V). In fact, using our ultrafilter characterization of the maximal ideals,
we may even restrict ourselves to Int™*(/). Note that the field isomorphism  of K(.X)
defined by x(H(X)) = $(1/X) fixes Int™(K, V'), hence a permutes the prime ideals
of Int®(K, V). From Proposition 2.1, a maximal ideal M of Int"(K, V) survives in
Int™(¥) if and only if, for each ¢ € M, there is x € V such that ¢(x) € m. Since the
corresponding ultrafilter U/ either contains ¥ or its complement, the maximal ideals
which lift in Int®(¥) are then precisely those corresponding to an ultrafilter which
contains V. Therefore, if i is a maximal ideal of Int®(K, V') either it survives in
Int™(¥) or its image via the isomorphism x does. The same is then true of each prime
ideal, in particular, we may conlude that Int®(K, V') and Int®(¥) have the same Krull
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dimension (possibly infinite). From now on, we shall thus restrict ourselves to the
study of Int®(V).

We then consider another type of prime ideal. First, we set some notations: if p is a
prime ideal of ¥, we denote by v, the valuation of K corresponding to the localization
Up, by vy the valuation of K(X) defined on K[X] by

n
vp(ao+ a1 X + -+ +a,X") = ir(1)f vpla;),

and lastly by ¥} the corresponding valuation domain. With these notations, we have
the following, which generalizes [3, Lemme 3.5].

Proposition 6.4. Let V be a valuation domain and p be a prime ideal such that V/p
is infinite or pV, is not principal. Then Int™(V) is contained in V-

Proof. Let ¢ € Int®(V) and suppose that ¢ # 0. We can write ¢ = d(g/h) withd € K
and g and 4 in V[X], relatively prime over K[X] and such that v3(g) = vi(h) = 0.
Then vp(¢) = vy(d) and we need to show that v,(d) > 0. For each a € V, since
¢(a) € V, we have

va(@a)) = vy(d) + vp(g(a)) — vp(h(a)) = 0.

A fortiori vy(dg(a)) > 0 for each a € ¥, in other words, dg is an element of the
ring Int(V, Vy) of polynomials taking ¥ into V. It is known that Int(V, V) = Int(V}),
the ring of integer-valued polynomials on ¥, [4, Proposition 5, Corollary 1] and that
Int(¥,) = ¥, [X] provided that the maximal ideal of V;, is not principal [5, Proposition
1.2] or that its residue field is infinite [4, Proposition 5, Corollary 2]. This clearly
completes the proof. [J

Under the conditions of this proposition, the maximal ideal of the valuation ring V3
contracts in Int®(}) to the prime ideal

P = {¢ € (V) | v5($) = 0}

This prime ideal is obviously above the prime ideal p of V. In particular, if the maximal
ideal m of ¥ is not principal or such that J/m is infinite, writing simply v* for v, and
V= for ¥}, then Int®(}) is contained in F'* and the maximal ideal of V* contracts to
a prime ideal above m of the form

M = {¢p € nt"(V) | v*(¢) >0}

Remark 6.5. We do not suppose here that [nt®(})") is a Priifer domain. For instance,
we have seen that, if the quotient field of V is algebraically closed, then Int®(V) =
ST'V[X], where S = {rX + 1 | r € m} [Proposition 2.4] and Int®(}) is not a Priifer
domain [Remark 3.6 (v)]. Yet, it remains true that Int™(V') is contained in V'*.
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In Theorem 6.3, we have shown that if m is principal, then each prime ideal of
Int®™(£, V') which lies over m is maximal. We show now that if m is not principal,
then the prime ideal 9™, which is above nt is not maximal (adding the hypothesis that
V/m is not algebraically closed, then Int®(¥) would nevertheless be a Priifer domain,
and if moreover the dimension of V is supposed to be finite, then each prime ideal
strictly containing 9M* would be maximal [Corollary 6.21).

Theorem 6.6. Let V' be a valuation domain such that m, the maximal ideal of 'V, is
not principal. Then the prime ideal IM* of Int™(V') is not maximal.

Proof. Let U be a nonprincipal ultrafilter on ¥ containing, for each ¢ in the value
group of ¥, the subset 4, = {x € m | v(x) < &}. Then let M be the corresponding
prime ideal of Int™(¥) lying over m. Let ¢p € M, Recall that we can write ¢ = d{(g/h)
where v*(y) = v*(h) =0 and d € m. It is easy to see that if v{x) is small enough, then
v(h(x)) < v(d), hence v(d(g(x)/h(x))) > 0. Hence ¢ € M. Therefore, M* C M. It
is also easy to see that X € M and that X € M*. O
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