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Rings of integer-valued rational functions 

Abstract 

Let D be an integral domain which differs from its quotient field K. The ring of integer-valued 
rational functions of D on a subset E of D is defined as Intn(E, D) = {,f’(X) E K(X)I,f’(E) c D}. 
We write h?(D) for Int”(D,D). 

It is easy to see that I&(D) is strictly larger than the more familiar ring M(D) of integer- 
valued polynomials precisely when there exists a polynomial ,f’(X) E D[X] such that ,f’(d) is a 
unit in D for each d g D. In fact, there arc striking differences between M”(D) and M(D) in 
many of the cases where they arc not equal. 

Rings of integer-valued rational functions have been studied in at least two previous papers. 
The purpose of this note is to consolidate and greatly expand the results of these papers. Among 
the topics included, we give conditions so that Int”(E, D) is a Priifer domain, we study the value 
ideals of Int”(E, D) (for example, we show that lntR(K, D) satisfies the strong Skolem property 
provided it is a Priifer domain), and we study the prime ideals of IntR(E, D) (for example, we 
show that if I’ is a valuation domain, then each prime ideal of IntR( V) above the maximal ideal 
nr of V is maximal if and only if m is principal). @ 1998 Elsevier Science B.V. All rights 

reserved. 

AMS Cl~r,s.~~~f,trtiolt.v. Primary: I3CO5. 13F05, 13F20; secondary: 13B24, 13G05, 13B22, 
13B30. 13F30 

I. Introduction 

Throughout this paper, D denotes an integral domain which is not a field, with 

quotient field K, and E a subset of K. The ring of integer-valued rational functions of 

* Corresponding author. 

0022-4049/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved 
I’ll: SOO22-4049(97)00120-5 



D on the subset E is defined as the ring 

IntH(E,D) = {.f’(x) E K(X) 1 f(E) 2 D>. 

We simply write M”(D) for Int”(D, D). Rings of integer-valued rational functions 

have been studied in at least two different papers, [3], and [ 111. The purpose of this 

note is to consolidate and greatly expand the results of these papers. 

The ring I@(D) has many similarities to the familiar ring of integer-valued poly- 

nomials Int(D) = {,f(X) E K[X] 1 f’(D) C D}. In fact, for many familiar domains D 

(such as Z in particular) Int(D) = Int”(D). However, we shall observe some striking 

differences in many instances where they arc not equal (as is always the case if D 

is quasi-local). For example, if V is a valuation ring with a maximal ideal which is 

not principal or with an infinite residue field, then Int( V) = V[X] and integer-valued 

polynomials are not much worth considering, whereas, if V is a rank-one discrete val- 

uation domain with finite residue field, Int( V) turns out to be a Priifer domain [7, 

Proposition 2.31. Also, if we looked at integer-valued polynomials on a subset, we 

should restrict ourselves to fractional subsets of C’ (that is, subsets with a common 

denominator), since otherwise Int( E, V) contains only constants [ 131. Integer-valued 

rational functions turn out to be much more interesting: we show that IntR(E, V) is 

not trivial and is a Priifer domain, even a Bkzout domain, whenever the maximal ideal 

m of V is principal or the residue tield V/III is not algebraically closed, whatever the 

subset E of K (and even for E = K ). We also generalize such results to Int”(E, D), 

where D is a Priifer domain satisfying various hypotheses. 

In Section 2 the principal results concern localization properties. In particular, we 

relate IntR(E, D) with Int”(K, D) and Int”(K,S- D), where S-‘D is a localization of D. 

In Section 3 we consider the question of characterizing the domains D for which 

IntR(D) is a Pri.ifer (or Btzout) domain. An easy necessary condition is that D itself 

be a Priifer domain. We describe two classes of Priifer domains such that IntH(E, D) 

is a Priifer domain: moMic Priiffcr tiomuins (such that there exists a manic unit-valued 

polynomial f‘(X) E D[X]) and .sirz~~lukur- Prijfh rhmuins (the definition of which is 

more technical). In particular, for a valuation domain V, these classes correspond to 

the cases where the maximal ideal of V is principal and where its residue field is not 

algebraically closed. 

In Section 4 we consider ideals of values of Int”(E,D). The major result is that 

Int”(K, D) satisfies the strong Skolem property whenever it is a Priifer domain. We 

also discuss subsets E of K such that Int”(E.D) satisfies the strong Skolem property. 

In Sections 5 and 6 we consider the prime idcal spectrum of Int”(E,D). First with 

no hypothesis on D, we consider the prime ideals above (0) and prove in particular 

that there always exist nonzero such primes. We next show how to describe some 

prime ideals of IntR(E,D), using ultrafilters. In the second of these two sections, we 

let D = V be a valuation domain (such that its maximal ideal is principal or its residue 

field is not algebraically closed) and consider the prime ideals of IntR(V) above the 

maximal ideal m of V. One of our major results is that each prime ideal of Int”(V) 

above m is maximal if and only if nt is principal. 
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2. Localization 

The domains such that Int(D) = It@(D) have been studied in [2] and [9] where 

they were called d-rings. We are mainly interested in non-&rings, for which equality 

does not occur. A necessary and sufficient condition for a domain to be a non-d-ring, 

is that there exists a nonconstant polynomial ,f(X) E D[X] such that ,f(d) is a unit in 

D for all d E D [9, Proposition I]. Indeed this condition is clearly sufficient since then 

l/f(X) lies in IntH(D), but is not a polynomial (note that if J(D), the Jacobson radical 

of D, is nonzero and if d is a nonzero element of J(D), then ,f(X) = dX + 1 is such 

a unit-valued polynomial). But now suppose that D = Y is the ring of a valuation c, 

and that ,f(X) is a manic unit-valued polynomial of V[X] (that is, taking unit values 

on V), then l/f(X) lies in Int”(K, V) and so does X/,f‘(X): if ,f(X) is of degree II, 

and if L’(X) < 0, then c(f(x)) = no < a(x) ( necessarily n 2 2). Along that line we 

have the following: 

Proposition 2.1. Let D be a domain and U(D) be the set of units of D. Suppose 

there exists u vationul jimction $ such thut 

a ti und X$ both belong to IntR(K, D), 

l G(D) C u(D). 
Then K(X) is the quotient field of IntR(K, D) and IntR(E,D) is the loculizution of 

lnt”(K, D) Irith respect to the m~~ti~~icuti~e set 

S = {p E Int’(K,D) 1 p(E) C: U(D)}. 

Proof. If 4 E K(X), then $(c$) and 4$(d) both belong to Int”-(K,D). Since 4 = 

($(@))-’ (&(4)), it follows that K(X) is the quotient field of IntR(K,D). Now 

suppose that (I, E IntR(E, 0). By hypothesis $( 4) is unit-valued on E, hence $(4) E S. 

Cl 

We now give examples where D is a Priifer domain. For each maximal ideal m of 

D we denote by c,,, the corresponding valuation. If Ic, = l/,f(X), where ,f(X) E D[X], 

belongs to lntR(K,D), note that f must necessarily be a unit-valued polynomial (hence 

the last hypothesis becomes superfluous in the previous proposition). Note also that ,f 

is unit-valued on D if and only if, for each maximal idea1 m of D, it is unit-valued on 

D,,, (that is, ,f has no root module m). Lastly, note that such a unit-valued polynomial 

is such that both l/f(X) and X/f(X) belong to IntR(K, D) if and only if, there is a 

family /1 of maxima1 ideals of D such that D = n,,,,, D,,, and, for each maximal ideal 

m E A, if x E K is such that U,,,(X) < 0, then c,,,(f(x)) 5 U,,,(X) < 0. 

Example 2.2. (1) Suppose that D is a Priifer domain such that there exists a manic 

unit-valued polynomial f(X) E D[X]. Then l/,f(X) and X/f(X) belong to IntH(K, 0). 

We shall say that D is manic. In particular, a valuation domain is manic if and only 

if its residue field is not algebraically closed. 



(2) Suppose that D is a Priifer domain and that there exists a family /1 of maximal 

ideals of D such that 

l D = n,,,,, D,,,, 
l for each m E /l, mD,,, = t,,,D,,, is a principal ideal, 

l there is an element t E D and an integer n such that, for each m E /1, 0 < r,,,(t) < 

n&(&r ). 
If f = 1 + tX”, then l/.f’(X) and X/f(X) belong to IntR(K,D). We shall say that 

D is sinyulur. In particular, a valuation domain is singular if and only if its maximal 

ideal nt is principal: m = tD; in this case we may simply consider the polynomial 

.f(X) = 1 + tx2. 

Note that the manic case is realized if the residue fields of D are all finite with a 

bound on their order and that the singular case is realized if D is a Dedekind domain, 

all its essential valuations being an extension of a tank-one discrete valuation, with a 

bound on their ramification index. 

Under similar hypotheses, we next state another localization property: 

Proposition 2.3. Let D he u domain. Suppose therr exists u polynomiul ,f(X) E D[X] 

such thut I/,f(X) and X/f(X) both belomq to Int”(K,D). Let S-‘D be a localizution 

of’D und U(S-‘D) be the set ofunits of S-ID. Then IntR(E,S’D) is the loculizmtion 

of’lnt”(E, D), ,vith respect to the multiplicutive set 

T = {q!~ t IntR(E,D) / $(E)c U(F’D)}. 

Proof. It is clear that T-’ Int’(E. D) C Int”(E,S~‘D). Let J‘(X) E D[X] be as in the 

statement of the proposition and let 4’, E IntR(E,S’D). As in the previous proof, write 

r$ = (l/,f(cj))-’ b/f(d). We need to show that l/,f(d) is a unit in IntR(E,S-‘D). 

Equivalently, it suffices to show that ,f(&d)) E U(S-‘D) for every d E E. Let d E E. 

Suppose 4(d) E D. Necessarily, ,f‘(&d)) IS a unit in D and so is a unit in S-r D as 

well. Now, suppose that 4(d) $C D. We know that cl,(d) E SP’D and that ,f(X) E D[X]. 

It follows that f(&d)) E S-ID. Since I/.f(&d)) E DCF’D the result follows. 0 

To conclude this section, we show that, if the quotient field of a valuation domain 

V is algebraically closed, it does not satisfy the hypotheses of Proposition 2.1 (since 

it does not satisfy its conclusions). Incidentally, this is a way to see that, in this case, 

the residue field of V is algebraically closed and its maximal ideal is not principal. 

Proposition 2.4. Let V be u wluution domuin nith muximal ideul m and quotient 

field K. Suppose thut K is ulgehruicull~~ closed. Then IntR(K, V) = V and IntR( V) = 

S-’ V[X] njhere S = {rX + 1 1 I’ E III}. 

Proof. Let E be a subset of K and 4 E Int”( E, D) be a nonzero rational function. 

We can write 4 = h/g where h and 9 both lie in V[X] and are relatively prime over 

K[X]. If d E E is a root of 61, then 4(d) is undefined. Hence, y cannot have any 



roots in E. If K is algebraically closed, and if E = K, then (/ must be constant, hence 

Int”(K, V) = V. With the same hypothesis, if E = V, then ~1 can be factored into lineal 

factors over K, of the form LX + 1, where Y E nr (since ~1 has no root in V). The result 

follows. 0 

3. PriiferlBCzout domains 

In this section, we consider the question of classifying the domains D such that 

Int”(E, D) is a Priifer (or Bizout) domain for various subsets E of K. We begin with 

a necessary condition which generalizes [ 11, Proposition 3.1 I]. 

Proposition 3.1. Lrt D hr u donwin such that Int”(E,D) is u Priijkr dormin. Then 

D is u Prii@ doomuin. 

Indeed, D is an homomorphic image of lnt’(E,D) (choose a E E and consider the 

morphism 4 E IntR(E, D) - &a)). 

We shall now prove that I#(K,D) is a Priifer domain in both the manic and 

singular case of Examples 2.2 (and even a B&out domain in the latter case). The next 

result generalizes [I 1, Theorem 3.31; its proof is in every respect similar (replacing 

I@(D) by Int’(E, D)). 

Theorem 3.2. Let D he u nwnic~ Pri@r domuin. Then IntR(K, D) is u PrGfkr u’omuin 

ud its Picurd ywup is torsion. More preciwl~~, suppose thut there is u dqrw n manic 

wit-culurd polynnrniul, ltith c.o&ic.irnt.s in D. Then, ,jbr euch ,finitc)ly qetwrutcd ideul 

PI of’ Int”(K, D), there is un intecger s .such thut 41”‘ is principal. 

The following corollary follows immediately. 

Corollary 3.3. Lrt D hr u Monica Prcfb domuin. Supposr thrw e.uist two monk unit- 

culucd pol~wmiu1.s ,fI und ,f 2 E D[X] the dqrers qf ~~hich uw r&tiwJ\. prime. Tlztw 

Int”(E. D) is u B&out dornuin. 

Note that the hypotheses of this corollary are easily satisfied: for example, choose 

two manic irreducible polynomials ,f’ and .q in Z[X] with relatively prime degrees 

(each degree greater than 1) and let D = Z[{f(d)-‘,g(d)-’ 1 d E Z}]. Then, D is a 

Dedekind domain where ,f and Q are both unit-valued on D (see [ 10, Proposition I. 14 

and Construction 1.161 for details). 

We shall next deal with singular Priifer domains and first give a sufficient condition 

for Int”(K, D) to be a Birzout domain (and thus also Int”(E,D) for each subset E of 

K). 

Lemma 3.4. Let D he u Pri@ donwin. Suppose thrrr rsists u ,f&zily A of n~usimul 

irletrls .such thut D = n,,,,, D,,, cm1 u rutionul Jiwwtion 0 t K(X) such that, ,fbr twch 
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TU E A und each x E K, 

- if v,,,(x) # 0, then L$,,(@)) = 0, 

- if u,,(x) = 0, then u,,,(~(x)) > 0. 

Then IntR(K,D) is II B&out domuin. 

Proof. Let 4, $ E IntR(K,D) and let 9l = (4, $). We want to show that ‘II is principal. 

Clearly, 0 E Int”(K, D). Hence, p = 0($/$)$~ + II/ belongs to 91. It is easy to see that, 

for all m E A and all x E K, 

It immediately follows that %!I = I) IntR(K, D). 0 

We next show that a singular Priifer domain is such that Int”(K, D) is a B&out 

domain, thus, generalizing [3, Corollaire 7.4) (which is concerned with a rank-one 

discrete valuation domain). From Proposition 2.1, IntR(E,D) is then also a B&out 

domain for each subset E of K. 

Theorem 3.5. Let D br u sinyuiw Priijtir domuin. Then IntR(K,D) is Q B&out 

domain. 

Proof. Recall, from the definition, that if D is a singular Priifer domain, there exists 

a family A of maxima1 ideals of D such that 

l D = n,,,,,, D,,,, 
l for each m E A, ntD,,, = t,,,D,,, is a principal ideal, 

l there is an element t E D and an integer IZ such that, for each m E A, 0 < t+,,(t) < 

~h,(t,,, ). 
One may then verify that the function 

U= 
t( 1 + X2,) 

(1 +tx’l)(t+X”)’ 

satisfies the hypothesis of the previous lemma. q 

Remark 3.6. (i) Let V be a valuation domain with a finite residue field. It results 

from Corollary 3.3 that Int”(E, V) is a B&out domain. In this case, it would also be 

easy to give a tinction satisfying the hypotheses of Lemma 3.4: 
_ If the cardinal of the residue field is q # 2, we could let 

I)= 
1 -p-l 

I +x -xq-” 

_ If the cardinal of the residue field is q = 2, we could let 

H= 
1 +X2 

1 fX +x2’ 
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(ii) If D is a valuation domain, it is singular if and only if its maximal ideal is 

principal. If t is a generator, the function 

I(1 +X1) 

Q=(l+tX*) 

is such that 

- if c(x) < 0, then t;@(x)) = 0, 

- if c(x) > 0, then Q(x)) > 0. 

Hence 0(X) = p(X) + p( l/X) satisfies the hypothesis of Lemma 3.4. 

(iii) It is clear that the previous theorem does apply, with the same proof, to the ring 

of integer-valued rational functions, in several variables (taking K” into D). Therefore, 

this ring of integer-valued rational functions in several variables is a Bezout domain. 

(iv) The results of this section show that in many cases in which IntR(E,D) is a 

Priifer domain, it is actually a Bezout domain. We may ask whether this is always the 

case. In particular, if D is a valuation domain with residue field equal to the field R 

of real numbers and with a nonprincipal maximal ideal. 

(v) According to Proposition 2.4, if V is a valuation domain and its quotient field 

is algebraically closed, then IntR(V) = S-‘V[X], where S = {rX + 1 1 Y E m}. In 

this case, IntR(V) is not a Priifer domain, indeed the maximal ideal (m,X) of V[X] 

survives in this localization and it contains incomparable height-one primes (such as 

the principal prime ideals generated by polynomials of the form X - d where d E nt). 

4. Skolem properties 

Let 91 be an ideal of IntR(E, D) and let x E E. Then ‘u(x) = {C&X) 1 # 

an ideal of D, called the value ideal of ‘?I at x. The Skolem properties deal 

question of the extent to which a finitely generated ideal is characterized by 

ideals. We say that 

E t?t} is 

with the 

its value 

l IntR(E, D) satisfies the Skolem property provided whenever 91 is a finitely generated 

ideal of IntR(E, D) such that ‘U(x) = D for all x E E, then % = IntR(E, 0). 

l IntR(E,D) satisfies the strong Skolem property provided whenever 91 and 23 are 

finitely generated ideals of IntR(E,D) such that ‘U(x) = %3(x) for all x E E, then 

9I= %3. 

We first deal with the Skolem property, with no restriction on E. 

Lemma 4.1. Let D be a Prtijkr domain und let E be a subset of K such that 

IntR(E, D) is a Prii,firr domuin. Then Intn(E, D) satisfies the Skolem property. 

Proof. For each x E E and each prime ideal p of D, 

V 11.r = {f(x) E K(Jf)lf(x) E Dp) 

is a valuation overring of IntR(E, D) and IntR(E, D) is the intersection of these valuation 

overrings, where x runs over the elements of E and p over the prime ideals of D (we 



may also restrict ourselves to the maximal ideals). The intersection of the maximal 

ideal of VP-r with IntR(E,D) is the prime ideal 

911 p.V = {.f’(X> E Int”(E.D)l.f’(s) E p}. 

and Vk,,,- is the localization of Int”(E,D) with respect to this prime ideal (since 

Int”(E,D) is a Priifer domain). From [S, Corollary 1.51, a Priifer domain R is the 

intersection of the localizations of R at some prime ideals +$, if and only if each 

proper finitely generated ideal is contained in one of these prime ideals. Therefore, if a 

finitely generated ideal ‘21 of Int”(E,D) is a proper ideal, it is contained in one of the 

prime ideals Y-U,, c, which implies that the value ideal 91(x) is proper (it is contained 

in the prime ideal p). This is the Skolem property. 0 

In fact, if Int”(E,D) is a Priifer domain, it satisfies the strong Skolem property, 

provided that E is large enough (a sufficient condition, according to our next result, 

is that it contains D. Thus, in particular, Int”(D) and Intn(K,D) satisfy the strong 

Skolem property). 

Theorem 4.2. Let D he N PI-i{f& tiomui~~ urd Ict E be a subset of K such that 

IntR(E, D) is u Puii@ tlomairz. Supposc~ thtrt, ,f& emch mxsirnul ideul m of’ D, E 

contuins elements with urhitruril~~ lurye ~xdues ,fbr the correspondiny vuluution r,,,. 

Then IntR(E, D) sutisfies the .strorzg Skolenl propet-ty. 

Proof. Let 91 and % be two finitely generated ideals such that VI(x) = 9(x), for all 

x E E. Without loss of generality, we may assume that 91 C ‘93. Since IntR(E, D) is a 

Priifer domain, 93 is invertible and 3 = ‘!I%- ’ is an integral ideal of IntH(E, D). Since 

‘%K’ = IntR(E, D), there are rational functions f\, . ,jj. in B and ~1,. ,yr in ‘23-l 

such that ,f,sl + + ,f;.r/r = 1. If x is not a pole of any of these functions, we can 

thus write .fi(x).(~~(x) + + ,f;.(s)(/,.(x) = I. Since, ,f;(-u) E ‘B(x) = ‘8(x), there are 

functions hi E 91 such that 17;(x) = ,f;(x). Therefore, S(x) = D for all x E E, except 

perhaps for finitely many elements (the poles of a finite family of rational functions). 

However, since S is finitely generated, if ‘?(x) were contained in some maximal ideal 

m of D, then so would 3(x + a) for each CI with sufficiently high value in D,,,. So in 

fact, 3 (x) = D for all x E E. But then it results from the Skolem property [Lemma 4. I] 

that S = BI’%’ = IntR(E,D). In conclusion 91 = $13. 0 

Remark 4.3. (i) If Int”(K,D) is a Bizout domain, there is a direct and easy proof that 

it satisfies the strong Skolem property (essentially the same as that given for Int”(D) in 

[I 1, Proposition 3.81): let BI and ‘21 be two finitely generated ideals such that I = 

‘93(.x), for all x E K. By hypothesis, % = (4) and $3 = ($) (both ideals are principal), 

thus, p = (4/$) takes only unit values on K except perhaps for those elements such 

that 4(x) = ($(x) = 0). This exceptional set is necessarily finite. However, as in the 

previous proof, it is easy to see that if p(x) were contained in some maximal ideal nt 

of D then so would p(x + a) for each a with sufficiently high value in D,,,. Hence, p 



actually takes unit values on all of K. Therefore, it is a unit in IntR(K,D) and finally 

91 = 6%. 

(ii) For the strong Skolem property, there must be some restrictions on E. Suppose, 

for example that E is a finite set and let ,f(X) = ndtE(X -d). Then .f‘ is identically 0 

on E and so is ,f2, while j” and j’* clearly do not generate the same ideal of IntR(E,D). 

For another example (where E may be infinite), let E = (0) U U(D) (where U(D) is 

the set of units of 0). Then ,f(X) = X takes unit values on E, except at 0 where it 

vanishes, and so does ,f”. However again, f and .f* do not generate the same idea1 

of Int”( E. D). 

The hypothesis of Lemma 4.1 is satisfied if D is a manic Ptifer domain [Theorem 

3.21. In fact, without assuming D to be a Priifer domain, the existence of a manic 

unit-valued polynomial is enough to ensure at least the Skolem property. 

Proof. Let ‘91 = (@,, 4*, , &.) be a finitely generated ideal of IntR(E,D) such that 

VI(x) = D for all I E E. Write 

,f(X)=ao+a,X+..‘+X”, 

then define $1 = 41 and, for i > 1, 

$! =(cj,)lr&-, =uoqy+a,~;-‘~-, +...+k”, =&:‘.f 9 
( > i 

By induction, $i E PI for each i. and in particular & E YI. On the other hand, note 

that for 2 and /j’ in D, 

X*p=aox’l+a,Xn-’ p + . + j3” = X’1.f‘ 0 f 

is such that, if x or /j does not belong to some maximal idea1 m of D. then neither 

does x It p belong to this maximal ideal. Therefore, since, for each maximal ideal m 

of D and each x E E we can find 4; such that $l(x) is not in m, it follows, as in 

Corollaries 1.13 and 1 .I5 of [IO] that t/+(x) is a unit of D, for all x E E. This implies 

that I/+ is a unit in lnt”(E,D). In conclusion 91 = Int”(E.D). 0 

5. Prime ideals: Generalities 

Assuming that Int”(K,D) is a Priifer domain with K(X) as quotient field (for 

example, when D is a manic or singular Priifer domain), we may focus much of 

our attention on the prime ideals of Int”(K, D), since Int”(E, D) is then an overring of 



this Ptifer domain. At times, it will also be useful to specifically focus on the prime 

ideals of Int”(D). With this in mind, but first without any hypothesis on the domain 

D, we first consider the prime ideals above (0). 

Lemma 5.1. Let D be u domuin, ,jtith quotient ,jidtl K und y be u nonconstant poly- 

nomial in K[X]. Then the ji,llon~in~J assertions uw c~quidmt: 

(1) there exists u nonzero polynomiul h E K[X], relutively prime to y in K[X] such 

that h/y E IntR(D), 

(2) there exists u non-_~o constunt a t D suc~h thut a/g E IntR(D). 

Proof. If h and y are relatively prime, there exists two polynomials hi and gl and 

a nonzero constant a such that hih + ~~161 = a. We may as well suppose that these 

polynomials have their coefficients in D, hence that they are integer-valued (we may 

also suppose that a E D). If h/y E Int”(D), then hl(h/y) + ~I(.LI/LJ) = a/s also belongs 

to lntR(D). Therfore (i) implies (ii). The converse is obvious. 0 

Under these equivalent conditions, y is invertible in the localization S-’ Int”(D), 

where S is the complement of (0) in D. In other words, S-’ IntR(D) = T-‘K[X], 

where T is the multiplicative set formed by these polynomials. The following result is 

then immediate. 

Proposition 5.2. The nonxro prime ideuls of Int”(D) above (0) ure in one-to-one 

correspondence ,vith the manic. irrducihl~ polynomiuls CI~‘K[X] dich never uppeur us 

the denominutor of’ an irrrduciblc~ intrgrr-vuluetl rutional junction. To the irreducible 

polynomial q corresponds the primr ideal 

!J3, = qK[X] n h@(D). 

Remark 5.3. (i) Polynomials which do not appear as the denominator of any irre- 

ducible integer-valued rational function certainly exist: for any d E D, consider for 

instance, the polynomial q(X) = X ~ d. Accordingly, there is always a chain (0) C ‘@, 

of primes above (0). 

(ii) If we restrict ourselves to the case where D = V is a valuation domain (as in the 

next section), it is clear that (I satisfies the equivalent conditions of the previous lemma 

if and only if {Q(x)) (x E D} IS b ounded. The nonzero prime ideals of Int’( V) above 

(0) then correspond to the irreducible polynomials of K[X] such that {c(y(x)) 1 x E D} 

is unbounded. 

Considering even a subset E of K, we now give very general examples of prime 

ideals of IntR(E, 0). We first observe that, for each pair (p,s), where p is a prime 

ideal of D and x E E, then 
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is a prime ideal of IntR(E,D) above p. We shall say that such a prime ideal is a 

pointed idcx~l (similar prime ideals occur in the study of integer-valued polynomials, 

see for instance [6]). We already considered such ideals in the previous section; also, 

letting p = (0), and E = D, it is easy to see that the prime ideal p Coj,,Y is nothing 

else than the prime ideal ‘@ (x_xj of Proposition 5.2. 

We obtain more ideals by the consideration of ultrafilters. We first set a definition 

and a notation: 

Definition 5.4. Let D be a domain, E be a subset of K, and H be a (nonempty) set 

of pairs (p,s). where p is a prime ideal of D and x E E. For each d, t IntR(E,D), let 

&,,.H) = {(PJ) E H / 4(x) E ~1. 

We say that 4 4. II ) is the churucteristic set of q5 on H. 

We can make a few easy observations: 
_ The characteristic set of the function 0 is H. 

~ Let 9, $ E Int”(E,D). Then 44~) n Q.H) C Q,+,~,II). 
_ Let 4,$ E Int”(E,D). Then 44.~1 U B(,~JI) = 4+$./i). 

Proposition 5.5. Let D hr u donwin, E he u subset of’ K, und U be u ,$lter on u 

(nonempty) set H of’puirs (+1,x), bt’here p is u prime id& of D and x E E. Let 

‘I-& = {$ E IntR(E,D)IBcti.Hj E U}. 

Proof. First note that 0 E +J3U so vc is not empty. Let 4,$ E +$J1;. Then B~$+,,,.H) 

belongs to U since it contains B,,,,,,nB,,,,,,. Similarly, if C#J E ‘vu and p E IntR(E, D), 

then 4,+ H ) contains B,d,,HJ, thus p$ E $? G. In conclusion, ‘J?, is an ideal. It is a 

proper ideal since the empty set does not belong to U and therefore, the characteristic 

set of a unit does not belong to U. 

Finally, suppose that c/$ E vu. Then Bc,p.~/, U B~$.H) = Bc~~,H) E U. If U is an 

ultrafilter, either B,,I,,H, or B($,H) must belong to U, hence either 4 or $ must belong 

to VU. Therefore, *qL. is a prime ideal. 0 

Remark 5.6. (i) In particular, if we choose a pair (p,x) in the set Q of all such pairs 

and let U be the principal ultrafilter consisting of all subsets of Q containing (p,x), 

then qC; is the pointed ideal $?l,Y. 

(ii) More generally, choosing a prime p and letting HP be the set of pairs (p,x), 

where x E E, then ‘jJc is a prime ideal of Int”(E,D) above p. In this case it is simpler 

to consider U as an ultrafilter on E. If, in particular, we consider the ring IntR( V) of 

integral-value rational functions on a rank-one discrete valuation domain V with finite 



residue field, ultrafilters on V correspond to the completion ^v of V and we, thus, 

recover the prime ideals of IntR( V) above the maximal ideal m of V as in [3]. 

It is not clear whether all prime ideals of Int”(E, D) are ultrafilter ideals, nevertheless, 

if we suppose that IntR(E,D) is a Priifer domain with torsion Picard group, ultrafilters 

on the set Q of all pairs (p,~) yield all maximal ideals of Int’<(E,D). 

Proposition 5.7. Let D he u domrin und E he u subset of K such that IntR(E,D) 

is u Prii;fer doom& with torsiorz Picurd group. Then, ,fbr each proper ideal ‘3 qf 
IntR(E, D), there exists un ultrujiltcr U on the .srt Q ef ull ordered puirs (p,x), where 

p is u prime ideul oj’D und .r E E, such tlzut 'II C vu. 

Proof. Let lJg[ be the collection of charateristic sets B$,Q, where # E 91. Note that 

B (b,~ is empty if and only if <t, is a unit. Therefore, r/,, does not contain the empty 

set. We next claim that U$J~ is closed under finite intersection. Let $1, q!~ be elements 

of ‘$1. They generate an ideal $23 and, by hypothesis, there exists a positive integer e 

such that $23’ is principal: $23” = (11/). Clearly, B $.n = B4,,n n (B+Q). Then it is well 

known that U+jr can be extended to an ultrafilter U on s2 and hence, ‘2l C ‘vu. 0 

6. Prime ideals: Valuation domain 

From now on we focus our attention on the special case, where D = V is a valuation 

domain such that Int”(E. V) is a Priifer domain with torsion Picard group, for example, 

when its maximal ideal is principal or its residue field is not algebraically closed. We 

let L’ be a valuation corresponding to V and m be the maximal ideal of V. 

To study the prime ideals above a prime ideal p. we consider ultrafilters on the set 

of pairs (p,x), where x E E, in other words ultrafilters on E. For each 4 E IntR(E, V), 

as in Definition 5.4, we then define the p-characteristic set of r$ as 

and to an ultrafilter Ii we associate the prime ideal 

Y p,Lj = (4 E Int”(E V) 1 B(,p.p) E U>. 

It is clear that the nr-characterisitic set B,/,,J,~ of a function & is empty if and only if 

$J is a unit. With the same proof as in Proposition 5.7, we then have the following: 

Proposition 6.1. Let V he u caluution domuin und E be u subset oj’ K such that 

Int”(E, V) is u Priijkr domuin ivith torsion Picurd group. Then euch muximul ideal 

of Int’(E, V) is qf the j&m1 

‘3331 w = { 4 E IntR(E, V) I &,w E W 

,fkr some ultrqjilter U on E. In purticulur, ij9.N is u muximul ideul of’IntR(E, V) then 

‘331 n v = m. 



If w = 9.v,,,.~ is a maximal ideal of the Priifer domain IntR(E, V), there is a single 

chain of prime ideals contained in %II. If p is contained in m, then ~9Jl,,,,u, contains 

the prime ideal q,.!, above p, corresponding to the same filter on E. Hence, the prime 

Y L, ,,’ appears in the chain of primes contained in )7J1. In particular, if V is a valuation 

domain of finite dimension r, we know that lntH(E, V) is of dimension at most Y + I 

(since V C lnt”(E, V) C K(X) and since V is a Jaffard domain [I, Lemme 1.11). Since 

the prime ideals of the form ‘j3,,u form a chain of length Y, we have the following. 

Corollary 6.2. Let V he u c&&ion domuin qf’,finite dimension r und E he u subset 

of’ K .such thut In?' (E, V) is u Priijkr domuin Gth torsion Picurd group. Then, 

(1 ) twd~ saturuted chuin of’primes in lntR(E, V) is of lenyth r or I’ + 1. 

(2) fbr euch musimul ideul ‘3J1 of Int”(E, V) and each prime ideul p oj’ V there is 

u prime ideul of’ lntR(E, V) uboce p contuined in ‘JJl, 

(3 ) jOr euch prime ideul p of V, euch chuin of primes in Int”(E, V) ubooe p bus 

leruqth ut most one. 

We have seen in the previous section that there is always a chain of length one 

above (0). For the prime ideals above m, a significant difference will appear between 

the two classes of valuation domains we have considered: in one case, all these prime 

ideals are maximal, in the other, there may be a chain of length one above m. We 

first consider the case where nt is principal. generated by t. 

Theorem 6.3. Let V be u uuluution domain such that the muximul ideul m is prin- 

cipul, generuted b~l t. Let E be a subset qf’ K und 9J3J1 be (I prime ideul oj’ IntR(E, V) 

,thich lies over tn. Then ‘331 is musimul. 

Proof. Choose $ E lnt”(E, V) but $ $! 9X. Then let 4 = t,b/(t + $2). It is easy to see 

that x/(t +x2) E V for all x E K. Hence, q5 E Int”(K, V) and a fortiori q5 E lntR(E, V). 

Consider $( 1 - Ic/ 4) = fi t,/(t + t,b2) = t+. Since 9JJJ1 contains t, it contains the product 

ti( 1 - $4). Since 91331 does not contain tj it contains (1 - $4). Hence $ is invertible 

module \331. q 

Since lnt”(E, V) is a localization of lntR(K, V), we could restrict ourselves to the 

study of lnt”(K, V). In fact, using our ultrafilter characterization of the maximal ideals, 

we may even restrict ourselves to lntR( V). Note that the field isomorphism x of K(X) 

defined by x(&X)) = &l/X) fixes Int”(K, V), hence a permutes the prime ideals 

of lntR(K, V). From Proposition 2.1, a maximal ideal ‘331 of lntR(K, V) survives in 

lntR( V) if and only if, for each q5 E YJl, there is .X E V such that 4(x) E m. Since the 

corresponding ultrafilter U either contains V or its complement, the maximal ideals 

which lift in lnt”( V) are then precisely those corresponding to an ultrafilter which 

contains V. Therefore, if 9J331 is a maximal ideal of lntR(K, V) either it survives in 

lnt”( V) or its image via the isomorphism 2 does. The same is then true of each prime 

ideal. in particular, we may conlude that lntH(K, V) and lnt’( V) have the same Krull 
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dimension (possibly infinite). From now on, we shall thus restrict ourselves to the 

study of IntR(V). 

We then consider another type of prime ideal. First, we set some notations: if p is a 

prime ideal of V, we denote by I:&, the valuation of K corresponding to the localization 

c’+,, by J$ the valuation of K(X) defined on K[X] by 

quo + UIX + . + a,,X”) = inf ~,(a~), 
0 

and lastly by V; the corresponding valuation domain. With these notations, we have 

the following, which generalizes [3, Lemme 3.51. 

Proposition 6.4. Let V he u vuluution domain und p be u prime ideal such thut V/p 

is infinite or +.I VP is not principal. Then lnt”( V) is contuined in V;. 

Proof. Let 4 E IntR( V) and suppose that 4 # 0. We can write 4 = d(g/h) with d E K 

and g and h in V[X], relatively prime over K[X] and such that $(g) = v;(h) = 0. 

Then v;(4) = up(d) and we need to show that vP(d) > 0. For each a E V, since 

&a) E V, we have 

vp($(u)) = vp(d) + v&(u)) - r,(h(u)) > 0. 

A fortiori c,(dy(u)) > 0 for each a E V, in other words, dy is an element of the 

ring lnt( V, VP) of polynomials taking V into VP. It is known that Int(V, VP) = Int(V,), 

the ring of integer-valued polynomials on VP [4, Proposition 5, Corollary l] and that 

Int( VP) = VP[X] provided that the maximal ideal of VF is not principal [5, Proposition 

1.21 or that its residue field is infinite [4, Proposition 5, Corollary 21. This clearly 

completes the proof. 0 

Under the conditions of this proposition, the maximal ideal of the valuation ring V; 

contracts in IntR( V) to the prime ideal 

‘13; = {$ E Int’(V) 1 L’;($) 2 O}. 

This prime ideal is obviously above the prime ideal p of V. In particular, if the maximal 

ideal m of V is not principal or such that V/m is infinite, writing simply v* for vz, and 

V* for V,:,, then IntR( V) is contained in V* and the maximal ideal of V* contracts to 

a prime ideal above m of the form 

YN* = (4 E M(V) ( c*(4) 2 O}. 

Remark 6.5. We do not suppose here that lntR( V) is a Priifer domain. For instance, 

we have seen that, if the quotient field of V is algebraically closed, then I@(V) = 

S-‘V[X], where S = {YX + 1 1 r E nt} [Proposition 2.41 and Int”(V) is not a Ptifer 

domain [Remark 3.6 (v)]. Yet, it remains true that I@(V) is contained in V*. 
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In Theorem 6.3, we have shown that if m is principal, then each prime ideal of 

Int”(E, V) which lies over m is maximal. We show now that if m is not principal, 

then the prime ideal YJI*, which is above nr is not maximal (adding the hypothesis that 

V/m is not algebraically closed, then lntR( Y) would nevertheless be a Ptifer domain, 

and if moreover the dimension of V is supposed to be finite, then each prime ideal 

strictly containing ‘331* would be maximal [Corollary 6.21). 

Theorem 6.6. Lrt V hr u caluufion domain such that nr, the maximal i&w1 qf’ V, is 

tzot prit@d. Then the prime i&d $331* of’ I#( V) is not mrrximul. 

Proof. Let U be a nonprincipal ultrafilter on V containing, for each E in the value 

group of V, the subset A,: = {x E m 1 c(x) < c}. Then let %llu be the corresponding 

prime ideal of IntR( V) lying over m. Let 4 E 9J351*. Recall that we can write &, = d(y/h) 

where v*(.c/) = c*(h) = 0 and d E m. It is easy to see that if c(x) is small enough, then 

u(h(x)) < c(d), hence v(d(y(x)/h(x))) > 0. Hence 4 E 911~. Therefore, YJI* 2 ‘J32~. It 

is also easy to see that X E ‘JJ1L, and that A’ @ ‘331*. 0 
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